7,12-DIHYDROISOQUINO[3,2-c]-1,2,4-BENZOTHIADIAZINE, A NEW

HETEROCYCLIC SYSTEM

V. M. Kisel' and V. A. Kovtunenko

Keywords: condensed isoquinolines, condensed 1,2,4-benzothiadiazines.

Of all the theoretically possible isoquinobenzothiadiazine systems, only derivatives of the isoquino[1,2-c]-1,2,4-benzothiazine system have been reported. These compounds hold promise in pharmacological research [1]. We propose a convenient method for the synthesis of derivatives of the previously unreported 7,12-dihydroisoquino[3,2-c]-1,2,4-benzothiadiazine system starting from o-bromomethylphenylacetonitrile (1) and o-aminobenzosulfamide (2).

$$\begin{array}{c} CN \\ NH_2 \\ NH_3 \\ NH_4 \\ NH_5 \\ NH$$

Heating equimolar amounts of **1** and **2** in 2-propanol leads to hydrobromide salt of 3-imino-2-sulfanoylphenyl-1,2,3,4-tetrahydroisoquinoline (**3**) in high yield. The structure of this product was supported by its spectral data, which are in good accord with the data for hydrobromide salts of 2-aryl-3-imino-1,2,3,4-tetrahydroisoquinolines [2]. The IR spectra show a set of N–H bands for the sulfamide and salt imine groups, imine C=N group, and sulfamide S=O group. The protons of the methylene group at $C_{(4)}$ in the 1 H NMR spectrum give an AB spin system. The lack of magnetic equivalence of these protons is a consequence of hindered rotation about the N– C_{Ar} single bond and presence of a magnetically-anisotropic sulfamide group in the *ortho* position to the 2-aryl substituent. Such spectral behavior is characteristic for salts of 2-aryl-1,2,3,4-tetrahydroisoquinoline-3-imines with asymmetrical substitution in the 2-aryl group [3].

Taras Shevchenko Kiev State University, 01033 Kiev, Ukraine; e-mail: atver@mail.univ.kiev.ua, kvm@sbet.com. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1279-1280, September, 2000. Original article submitted March 6, 2000.

Carrying out the reactions of **1** and **2** by heating these compounds in acetonitrile or dioxane for 5 h or by heating salt **3** in dimethylformamide for 0.5 h leads to 7,12-dihydroisoquino[3,2-c]-1,2,4-benzothiadiazine 5,5-dioxide (**4**) in high yields. The IR spectrum of this compound lacks N–H stretching bands but retains the S=O bands, while its ¹H NMR spectrum has two singlets for the protons of the methylene groups and two aromatic proton multiplets.

Heating 4 in methanol in the presence of a five-fold excess of sodium borohydride leads to reduction of the C=N bond and formation of 6,6a,7,12-tetrahydroisoquino[3,2-c]-1,2,4-benzothiadiazine 5,5-dioxide (5). This compound may be obtained under the same conditions from salt 3. Cyclization to give tetracyclic derivative 4 probably precedes the reduction. As expected [4], the sulfonyl group is not altered under these conditions, as indicated by retention of the S=O bands in the IR spectrum of the reduction product. The finding of an A₂MX spin system in the 1 H NMR spectrum of 4 for the protons of the $C_{(7)}H_{(2)}$ – $C_{(6a)}H$ – $N_{(6)}H$ structural fragment is in good accord with the proposed structure.

Compound 3; mp 249°C. ¹H NMR spectrum (DMSO-d₆), δ, ppm: 9.65 (1H, s, N⁺-H); 8.35 (1H, s, N⁺-H); 7.3-8.15 (10H, m, C_{Ar} - $\frac{H}{2}$, C_{Ar} - $\frac{H}{2}$, the broad singlet at 7.76 ppm disappears in the presence of D_2O); 4.92 (2H, s, $C_{(1)}$ H₂); 4.23 (1H, d, J_{AB} = 18 Hz, $C_{(4)}$ H_A); 4.01 (1H, d, J_{AB} = 18 Hz, $C_{(4)}$ H_B). IR spectrum (KBr), cm⁻¹: 3000-3400 (N-H), 1660 (C=N⁺), 1240, 1160 (SO₂). Found, %: Br 21.05; N 10.77; S 8.40. C_{15} H₁₅N₃O₂S. Calculated, %: Br 20.90; N 10.99; S 8.39.

Compound 4; mp 263°C. ¹H NMR spectrum (DMSO-d₆), δ , ppm: 7.8-8.0 (3H, m, C_{Ar}–<u>H</u>); 7.3-7.7 (5H, m, C_{Ar}–<u>H</u>); 5.28 (2H, s, C₍₁₂₎H₂); 4.08 (2H, s, C₍₇₎H). IR spectrum (KBr), cm⁻¹: 1280, 1160 (SO₂). Found, %: C 63.18; H 4.35; N 10.02; S 11.44. C₁₆H₁₂N₂O₂S. Calculated, %: C 63.36; H 4.25; N 9.85; S 11.28.

Compound 5; mp 208°C. ¹H NMR spectrum (DMSO-d₆), δ , ppm: 8.15 (1H, d, ${}^{3}J_{6,6a} = 11$ Hz, N₍₆₎–H); 7.15-7.8 (7H, m, C_{Ar}–<u>H</u>); 6.88 (1H, m, C_{Ar}–<u>H</u>); 4.95 (1H, dt, ${}^{3}J_{6a,7} = 6.5$ Hz, ${}^{3}J_{6,6a} = 11$ Hz, C_(6a)–H); 4.86 (1H, d, ${}^{2}J_{AB} = 16$ Hz, C₍₁₂₎–H_A); 4.46 (1H, d, ${}^{2}J_{AB} = 16$ Hz, C₍₁₂₎–H_B); 3.19 (2H, d, ${}^{3}J_{6a,7} = 6.5$ Hz, C₍₇₎H₂). IR spectrum (KBr), cm⁻¹: 3210 (N–H), 1305, 1160 (S=O). Found, %: C 62.78; H 4.77; N 9.89; S 11.41. C₁₆H₁₄N₂O₂S. Calculated, %: C 62.92; H 4.93; N 9.78; S 11.20.

REFERENCES

- 1. R. Troschuetz and O. Heinemann, Arch. Pharm. (Weinheim, Germany), 329, 51 (1996).
- 2. V. A. Kovtunenko, V. M. Kisel', A. V. Turov, A. K. Tyltin, and F. S. Babichev, *Ukr. Khim. Zh.*, **54**, 967 (1988).
- 3. V. M. Kisel', V. A. Kovtunenko, A. K. Tyltin, and F. S. Babichev, *Ukr. Khim. Zh.*, **56**, 749 (1990).
- 4. A. Hajos, *Complex Hydrides in Organic Chemistry* [Russian translation], Khimiya, Leningrad (1971), p. 320.